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Abstract
Hele-Shaw flows with time-dependent gaps create fingering patterns, and magnetic 
fluids in Hele–Shaw cells create intriguing patterns. We propose a simple numeri-
cal method for Hele–Shaw type problems by the method of fundamental solutions. 
The method of fundamental solutions is one of the mesh-free numerical solvers for 
potential problems, which provides a highly accurate approximate solution despite 
its simplicity. Moreover, the numerical method satisfies the volume-preserving prop-
erty combining with the asymptotic uniform distribution method. We use Amano’s 
method to arrange the singular points in the method of fundamental solutions. We 
show several numerical results to exemplify the effectiveness of our numerical 
scheme.
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1 Introduction

The Hele–Shaw problem describes the motion of a viscous fluid in a quasi-two-dimen-
sional space, originating in a short paper by Henry Selby Hele–Shaw [8], and was pre-
sented as a kind of experimental model for describing stream lines by using viscous 
fluids. Let 𝛺(t) ⊂ ℝ

2 be a bounded region occupied by a fluid, and � (t) = ��(t) be its 
boundary. Then, the Hele–Shaw problem is described as follows:

where p(⋅, t) is the pressure in �(t) , � is the surface tension coefficient, �(⋅, t) denotes 
the curvature, V(⋅, t) is the normal velocity, N(⋅, t) is the unit outward normal vector 
to � (t) , and h denotes the gap of the Hele–Shaw cell. The Laplace equation for pres-
sure p, the first equation in (1), comes from the Darcy’s law

and the incompressibility condition

where u denotes the velocity field. The Dirichlet boundary condition, the second 
equation in (1), expresses the surface tension. For details of derivation, see, for 
example, the books [6, 14].

There are many variants of the Hele–Shaw problem, and in particular, they have 
been actively used for the experimental and mathematical study of fingering phenom-
ena in various scientific fields [4, 9, 10, 20, 27, 28]. Among them, Shelley et al. formu-
lated the Hele–Shaw problem with a time-dependent gap in [27] (see also Fig. 1):

where h(t) denotes the gap of the Hele–Shaw cell depending on time t. In the current 
situation, where the gap is time-dependent, the Darcy’s law and the incompressibil-
ity condition are respectively given by

(1)

⎧
⎪⎨⎪⎩

△p(⋅, t) = 0 in �(t), t ∈ (0, T),

p(⋅, t) = ��(⋅, t) on � (t), t ∈ (0, T),

V(⋅, t) = −h2∇p(⋅, t) ⋅ N(⋅, t) on � (t), t ∈ (0, T),

u = −h2∇p,

∇ ⋅ u = 0,

(2)

⎧⎪⎨⎪⎩

△p(⋅, t) =
ḣ(t)

h(t)3
in 𝛺(t), t ∈ (0, T),

p(⋅, t) = 𝜎𝜅(⋅, t) on 𝛤 (t), t ∈ (0, T),

V(⋅, t) = −h(t)2∇p(⋅, t) ⋅ N(⋅, t) on 𝛤 (t), t ∈ (0, T),

Fig. 1  Hele–Shaw cell
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Therefore, the equation to be satisfied by the pressure is now the Poisson equation, 
not the Laplace equation. However, since a particular solution of the Poisson equa-
tion can be obtained concretely as

by considering p − p∗ as p again, (4) eventually leads to the following system:

As a more advanced topic, fingering phenomena in magnetic fluids have also been 
investigated [5, 17, 19, 29]. The following summarizes the mathematical model pro-
posed in [29]. Darcy’s law and the incompressibility condition are

where �m = �m(x, t) is the magnetostatic field potential given by

in which Mc denotes the strength of the magnetization. In other words, we obtain the 
following system:

By constructing a particular solution of the Poisson equation in the same way as we 
derived (7), and by performing the appropriate non-dimensionalization, we finally 
obtain the following model:

u = −h(t)2∇p, ∇ ⋅ u = −
ḣ(t)

h(t)
.

p∗(x, t) =
ḣ(t)

4h(t)3
|x|2,

(3)

⎧
⎪⎨⎪⎩

△p(⋅, t) = 0 in 𝛺(t), t ∈ (0, T)

p(x, t) = 𝜎𝜅(⋅, t) −
ḣ(t)

4h(t)3
�x�2 for x ∈ 𝛤 (t), t ∈ (0, T),

V(x, t) = −h(t)2
�
∇p(x, t) +

ḣ(t)

2h(t)3
x

�
⋅ N(x, t) for x ∈ 𝛤 (t), t ∈ (0, T).

−∇p −
12𝜂

h(t)2
u +

2Mc

h(t)
∇𝜑m = 0, ∇ ⋅ u = −

ḣ(t)

h(t)
,

�m(x, t) = −Mc ∫
�(t)

�
1

�x − p� −
1√�x − p�2 + h(t)2

�
dp,

⎧⎪⎨⎪⎩

△p(⋅, t) =
12𝜂ḣ(t)

h(t)3
+

2Mc

h(t)
△ 𝜑m(⋅, t) in 𝛺(t), t ∈ (0, T),

p(⋅, t) = 𝜎𝜅(⋅, t) on 𝛤 (t), t ∈ (0, T),

V(⋅, t) = −
h(t)2

12𝜂
∇
�
p −

2Mc

h
𝜑m

�
(⋅, t) ⋅ N(⋅, t) on 𝛤 (t), t ∈ (0, T).
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where R0 is the radius of the initial drop, h0 is the initial gap, h∗(t) = exp(t) , 
�(x, t) = �m(x, t)∕Mc , Bm is the magnetic Bond number, and Ca is the capillary 
number.

The magnetic fluid is one of the smart fluids. Because of the property which 
the smart fluids can be handled by controlling the electric and magnetic field, 
in other words, without touching directly, they are widely used in various fields, 
such as electric devices, mechanical engineering, and medical applications. In the 
1960s, magnetic fluids were developed as space engineering development. R. E. 
Rosensweig is a pioneer of the investigation into magnetic fluids. His works (for 
instance, [3, 18]) are cited in many papers, even though they were contributed 
about half of a century ago. Rosensweig advocated the governing equation of 
magnetic fluid (see [18] for more details):

This paper uses the magnetic fluid Hele–Shaw model (11) derived from his equation 
(12).

Magnetic fluid creates intriguing patterns. For instance, magnetic fluids in the 
magnetic field create many spikes in three-dimensional space. The phenomena, 
called the spike phenomena, are well known as the intriguing phenomena caused 
by the collaboration of magnetic fluids and the magnetic field. On the other hand, 
the fluids create fingering and the so-called labyrinth patterns in a Hele–Shaw 
cell. Labyrinth patterns are mainly observed only in quasi-two-dimensional 
space. These two-dimensional and three-dimensional phenomena certainly have 
some common features; however, the patterns show differences between two-
dimensional and three-dimensional problems. Therefore, proposing a simple and 
effective numerical method for magnetic fluid Hele–Shaw problems will signifi-
cantly impact investigations into magnetic fluids.

In order to solve these problems, various numerical methods have been pro-
posed so far. The most successful method is based on the boundary integral 
method, originating in the celebrated paper [9] by T.Y. Hou, J.S. Lowengrub, and 
M.J. Shelley. Because of the surface tension, explicit time discretization requires 
tiny time increments, and implicit discretization is difficult. They overcame these 

(4)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

△p(⋅, t) = 0 in 𝛺(t), t ∈ (0, T),

p(x, t) = 𝜅(x, t) −

�
R0

h0

�1∕3
𝜋2∕3Bm

h∗(t)
𝜑(x, t)

−

�
R0

h0

�2
𝜋Ca�x�2
4h∗(t)

2
for x ∈ 𝛤 (t), t ∈ (0, T),

V(x, t) = −
1

𝜋Ca

�
h0

R0

�2

h∗(t)
2∇p(x, t) ⋅ N(x, t)

−
ḣ∗(t)

2h∗(t)
x ⋅ N(x, t) for x ∈ 𝛤 (t), t ∈ (0, T),

(5)
�v

�t
+ (v ⋅ ∇)v = −∇p∗ + �0M∇H + � △ v + �g.
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difficulties by reformulating the problem differently and successfully computed 
the time evolution using a relatively large time increment.

The original Hele–Shaw problem is known to have the following geometric 
variational structure.

– Curve-shortening property: the length |� |(t) of � (t) decays monotonically in 
time;

– Area-preserving property: the area |�|(t) of �(t) is constant in time;
– Barycenter-fixed property: the barycenter of �(t) does not move along time 

evolution.

In both the Hele–Shaw problem with time-dependent gap (7) and the Hele–Shaw 
problem for magnetic fluids (11), the volume-preserving property holds; that is, 
|�|(t) ⋅ h(t) is constant in time. Therefore, it is natural to expect that these proper-
ties also hold in some sense in numerical methods. A method that preserves the 
mathematical structure of the target equation in a discrete sense is known as a 
structure-preserving numerical method, or geometric integrator, and has been the 
subject of many studies [7].

This paper’s first and third authors recently proposed a structure-preserving 
numerical scheme for the Hele–Shaw problem [24]. The essential idea is to 
combine the method of fundamental solutions (MFS for short) with the uniform 
distribution method (UDM for short). The MFS is a numerical method for the 
Laplace equation that does not require any numerical integration and has the 
remarkable property that its approximation error decays exponentially for the 
number of sample points [2, 11, 12, 21]. The UDM is vital for stable numerical 
computation of moving boundary problems because it keeps the distance between 
adjacent nodes uniform with time evolution [15, 16, 25, 26]. Furthermore, one of 
the main features of the numerical scheme proposed in [24] is that, although it is 
in the sense of a semi-discrete problem, the area-preserving property is strictly 
achieved, and the curve-shortening and barycenter-fixed properties hold in an 
asymptotic manner. In this sense, the paper [24] is the first structure-preserving 
numerical method to the Hele–Shaw problem. Other structure-preserving numeri-
cal schemes for moving boundary problems include, for example, [13, 23].

The purpose of this paper is to construct a numerical scheme satisfying the 
volume-preserving property for the Hele–Shaw problem with a time-dependent 
gap (7) and the Hele–Shaw problem with magnetic fluid (11) by extending the 
contents of the paper [24]. In order to solve the problem (11), we need to compute 
the magnetostatic potential � , i.e., the integral over �(t) . In this paper, we adopt 
the Monte Carlo method for numerical integration. In addition, we improve the 
method adopted in [24] to arrange the singular points that determine the accuracy 
of the approximate solution by the MFS.

This paper is organized as follows. Section 2 constructs a numerical scheme 
for problems (7) and (11). In particular, we show that the scheme satisfies the 
volume-preserving property as a semi-discrete scheme. Section 3 reports numeri-
cal results for these problems and shows that the proposed method is more 
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straightforward than the previous ones but gives similar numerical results. 
Finally, in Sect. 4, we conclude this paper by presenting future research topics.

2  Numerical scheme

We approximate the boundary curve � (t) by a polygonal curve; that is, let 
� (t) =

⋃N

i=1
�i(t) be an N-sided polygonal Jordan curve, where �i(t) is the i-th edge 

of � (t) defined by

where Xi(t) is the i-th vertex of � (t) ( i = 1, 2,… ,N ). These N vertices are labeled in 
the anti-clockwise order throughout this paper, and we adopt the periodic notation 
X0(t) = XN(t) and XN+1(t) = X1(t) (see Fig. 2).

The motion of the polygonal curve is then described by the following evolution 
law, which is a system of ordinary differential equations:

where Ni and Ti are the unit outward normal and unit tangent vectors at Xi , and Vi 
and Wi denote the normal and tangential velocities at Xi , respectively.

We here summarize our numerical scheme. The details of each step are described 
in the subsequent subsections.

For a given polygonal curve � (m) at the m-th time, we compute the right-hand 
side of the evolution law (14) as in the following three steps. 

Step 1:  Define the unit tangent vector T(m)

i
 at X(m)

i
 as the unit vector pointing in 

the exact middle direction of the unit tangent vectors defined on the two 
adjacent edges. Then, by rotating it by −�∕2 , we define the unit outward 

�i(t) = (Xi−1(t),Xi(t)) ∶= {�Xi−1(t) + (1 − �)Xi(t) ∣ � ∈ (0, 1)},

(6)Ẋi(t) = Vi(t)Ni(t) +WiTi(t), i = 1, 2,… ,N, t ∈ (0, T),

Fig. 2  Jordan polygonal curve
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normal vector N(m)

i
 at X(m)

i
 . We also define the discrete curvature �(m)

i
 on 

each edge as the first variation of the perimeter.

Step 2:  The MFS solves the Dirichlet problem, (7) or (11), in the polygonal region 
�(m) . For example, (7) can be formulated as in the following using the dis-
crete curvatures {�(m)

i
}N
i=1

 defined in Step 1: 

 Using the approximate solution P(m) by the MFS and the unit outward normal vec-
tor N(m)

i
 at X(m)

i
 , the normal velocity V (m)

i
 can be computed. The same procedure also 

works for problem (11).

Step 3:  Compute the tangential velocities {W (m)

i
}N
i=1

 using the uniform distribution 
method.

 Since the right-hand side of equation (14) can be computed by the above steps, the 
evolution law (14) is computed by the fourth-order Runge–Kutta method to obtain 
the polygonal curve � (m+1) at the next time t(m+1).

In the following, superscripts indicating time steps are omitted unless there is a 
risk of misunderstanding.

2.1  Step 1: Spatial discretization

2.1.1  Definitions of T
i
 and N

i

Let ri be the length of �i and let ti and ni be the unit tangent vector and the unit out-
ward normal vector defined naturally on �i.

Unit tangent vectors and unit outward normal vectors at vertices are not well-
defined, and there are various possible ways of defining them. In this paper, we 
adopt the following definitions. Let �i be a signed exterior angle at Xi ; that is, the 
angle between two adjacent edges �i and �i+1 , satisfying ti ⋅ ti+1 = cos�i . Using this 
�i , we define the unit tangent vector Ti as follows:

where ���i ∶= cos(�i∕2) . The unit outward normal vector Ni is then defined by 
Ni = −T⊥

i
.

2.1.2  Definition of discrete curvature

The curvature is usually defined as satisfying the Frenet formula. However, since 
each side of a polygonal curve is a line segment, the usual definition of curvature 

{
△p(⋅, t(m)) = 0 in 𝛺(m),

p(x, t(m)) = 𝜎𝜅
(m)

i
−

ḣ(t(m))

4h(t(m))3
|x|2 for x ∈ 𝛤

(m)

i
, i = 1, 2,… ,N.

(7)Ti =
ti + ti+1

|ti + ti+1| =
ti + ti+1

2���i
, i = 1, 2,… ,N,
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will lead to zero curvature almost everywhere, which is not suitable for studying 
polygonal curves’ motion. On the other hand, the curvature can be interpreted as 
the first variation of the length functional. This paper applies this view to polygonal 
curves and derives an appropriate expression for discrete curvature.

The perimeter L of a polygonal curve �  is given by

According to the evolution law (14), the time derivative of L can be computed as 
follows:

where ���i = sin(�i∕2) . Let us assume that the following relation holds between the 
normal velocities {Vi}

N
i=1

 at vertices and the normal velocities {vi}Ni=1 on edges:

which is an analogy of (16). Then, the equation (18) for the time derivative of the 
perimeter is

where ���i = ���i∕���i . We define �i to be the discrete curvature of the i-th edge �i.

2.2  Step 2: Computation of normal velocities by the MFS

Normal velocities are computed using the MFS, a mesh-free numerical solver for 
potential problems. For example, in the Hele–Shaw problem with a time-dependent 
gap (7), the boundary is approximated by a polygonal curve, and the discrete cur-
vature gives the curvature on edge, so the potential problem to be solved at time 
t = t(m) is

Following the paper [24], the approximate solution P based on the MFS is given by

L =

N∑
i=1

ri.

(8)L̇ = 2

N∑
i=1

Vi���i,

(9)Vi =
vi + vi+1

2���i
, i = 1, 2,… ,N,

L̇ =

N∑
i=1

𝜅iviri, 𝜅i =
���i + ���i−1

ri
, i = 1, 2,… ,N,

{
△p(⋅, t(m)) = 0 in 𝛺(m),

p(x, t(m)) = 𝜎𝜅
(m)

i
−

ḣ(t(m))

4h(t(m))3
|x|2 for x ∈ 𝛤

(m)

i
, i = 1, 2,… ,N.

P(x) = Q0 +

N∑
j=1

QjEj(x), Ej(x) = E(x − yj) − E(x − zj),
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where E(x) = (2�)−1 log |x| is the fundamental solution of the Laplace operator. The 
points {yj}Nj=1 and {zj}Nj=1 are singular points and dummy points, respectively, chosen 
“suitably” from outside the region �(m) . They play a role in controlling the accuracy 
of the MFS approximate solution. The specific arrangement of these points will be 
discussed in Sect. 3.1. Since P satisfies the Laplace equation exactly, the linear com-
bination coefficients {Qj}

N
j=0

 are determined by an approximate treatment of the Dir-
ichlet boundary conditions and the volume-preserving property. In this study, we 
adopt the midpoint X∗

i
= (Xi + Xi−1)∕2 of each edge as a collocation point and 

approximate the Dirichlet boundary condition using the collocation method. In other 
words, {Qj}

N
j=0

 are given as a solution to the following linear system

with a constraint

By differentiating the approximate solution P in the normal direction ni , the normal 
velocity vi on the i-th edge can be computed by

The advantage of using the MFS is that the gradient ∇P can be computed analyti-
cally. In other words, there is no need to perform numerical differentiation. Finally, 
the normal velocities {Vi}

N
i=1

 at vertices can be obtained using relation (19).
At the end of this subsection, we clarify what constraint (24) means. To this 

end, we state a little more precisely the volume-preserving property. Since the 
volume V(t) of the fluid region �(t) × (0, h(t)) is given by V(t) = A(t)h(t) , where 
A(t) = |�|(t) , the volume-preserving property V̇ = 0 can be rephrased as the fol-
lowing equation for the time evolution of the area:

According to Proposition 4 in the paper [24], the time evolution of the area under 
the evolution law (14) is given by

If the error term errA is equal to 0, then the normal velocity formula (25) gives the 
time evolution of the area as

P(X∗
i
) = 𝜎𝜅

(m)

i
−

ḣ(t(m))

4h(t(m))3
|X∗

i
|2, i = 1, 2,… ,N,

(10)
N∑
j=1

QjHj = 0, Hj =

N∑
i=1

∇Ej(X
∗
i
) ⋅ niri, j = 1, 2,… ,N.

(11)vi = −h(t(m))2
(
∇P(X∗

i
) +

ḣ(t(m))

2h(t(m))
X∗
i

)
⋅ ni, i = 1, 2,… ,N.

(12)Ȧ(t) = −
ḣ(t)

h(t)
A(t).

(13)Ȧ =

N∑
i=1

viri + errA, errA =

N∑
i=1

(
Wi���i −

vi+1 − vi

2

) ri+1 − ri

2
.
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Therefore, because of (26), we obtain constraint (24).
The error term errA must be 0 for the above argument to be consistent. For this pur-

pose, we adopt the uniform distribution method to compute the tangential velocity. 
Details are given in Sect. 2.3.

The same consideration can be applied to the Hele–Shaw problem for magnetic flu-
ids (11) to obtain an approximate solution satisfying the volume-preserving property.

2.3  Step 3: Computation of tangential velocities by the UDM

As mentioned in the previous subsection, the error term must be 0 to achieve the vol-
ume-preserving property. Given the representation (27) of the error term, one possibil-
ity is to apply the UDM. It is a method of moving vertices in the tangential direction 
so that the length of each edge of the polygon is equal, i.e., ri = L∕N ( i = 1, 2,… ,N ), 
and is known to provide stable numerical computations. This study adopts the asymp-
totic UDM, which achieves uniform distribution in an asymptotic sense. This method 
is robust to the effects of numerical errors such as rounding errors, and the tangential 
velocities are given as linear expressions of normal velocities. The asymptotic UDM 
requires that ri(t) → L(t)∕N as t → Tmax , not ri(t) = L(t)∕N , holds, where Tmax repre-
sents a final computation time.

We assume that the following relations hold to derive an expression for the tangen-
tial velocity by the asymptotic UDM:

where {�i}Ni=1 are parameters chosen so that their mean is equal to 0. The function � 
controls the strength of the effect of the uniform arrangement, and a candidate satis-
fies �(t) → ∞ as t → Tmax . Differentiating both sides of equation (29) with respect 
to t yields

where 𝜔(t) = �̇�(t) . On the other hand, if we compute the time derivative of the 
length of the edge using the evolution law (14), we obtain

Combining (30) and (31), we obtain recurrence relations describing the tangential 
velocity:

Ȧ(t) = −h(t)2
N∑
j=1

QjHj −
ḣ(t)

h(t)
A(t).

(14)ri −
L

N
= �ie

−�(t), i = 1, 2,… ,N,

(15)ṙi =
L̇

N
+
(
L

N
− ri

)
𝜔(t), i = 1, 2,… ,N,

(16)ṙi = Vi���i + Vi−1���i−1 +Wi���i −Wi−1���i−1, i = 1, 2,… ,N.

Wi���i −Wi−1���i−1 =
L̇

N
+
(
L

N
− ri

)
𝜔(t) − Vi���i − Vi−1���i−1
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for i = 2, 3,… ,N . Imposing the zero-average condition 
∑N

i=1
Wi = 0 , we obtain N 

linearly independent equations. This system can be solved analytically, resulting in 
the following expression for the tangential velocity in the asymptotic UDM:

where

for i = 2, 3,… ,N . Note that if the initial arrangement of vertices is uniform, then 
the asymptotic UDM theoretically keeps uniformity during time evolution.

There is another way to eliminate errA . If Wi is defined by

then the error term errA also vanishes. However, in this case, the orientation of the 
edges of the polygonal curve does not change in time. Namely, the time evolution 
of the polygon is restricted to the crystalline motion. This tangential velocity is use-
ful for theoretical analysis, but it is not suitable for numerical computation of prob-
lems with large domain deformation, such as the Hele–Shaw problem. Therefore, we 
adopt the asymptotic UDM given by equation (32) in this study.

3  Numerical result

This section shows some results of our numerical computations for (7) and (11).

3.1  Arrangement of points by the modified Amano’s method

In solving problems (7) or (11) by the MFS, singular points and dummy points must 
be appropriately placed. In the paper [24], the singular points are placed at a fixed 
distance in the unit outward normal direction from the midpoints of the edges:

However, there is no mathematical background to this point placement, and there 
may be better ways to arrange them.

This study employs a modified Amano’s method proposed in numerical computa-
tion of conformal mappings (see for instance [1]). Namely, the singular points are 
placed according to the following relations:

(17)Wi =
�i +W1���1

���i

, i = 2, 3,… ,N, W1 = −

∑N

i=2
�i∕���i

���1

∑N

j=1
���

−1
j

,

𝛹i =

i∑
l=2

𝜓l, 𝜓i = −Vi���i − Vi−1���i−1 +
L̇

N
+
(
L

N
− ri

)
𝜔

Wi =
vi+1 − vi

2���i
, i = 1, 2,… ,N,

(18)yj = X∗
j
+ dnj, j = 1, 2,… ,N.
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where na
j
 is a modified unit outward normal vector determined by the positions of 

the three points X∗
j−1

 , X∗
j
 , and X∗

j+1
 and is defined through

The geometric picture of the arrangement of singular points is shown in Fig. 3.
Amano’s method can be though of as corresponding to a discrete version of 

point arrangement using a conformal mapping, which is used in the theoretical 
analysis of the MFS. For example, in Fig. 3, the thin line expresses the original 
smooth curve, and na

j
 is considered an approximation of the unit outward normal 

vector at X∗
i
 in this case. This perspective is correct, and it can be mathematically 

proved that Amano’s method approximates the method using conformal map-
pings. For more details, refer to the paper [22]. Hence, we use the modified Ama-
no’s arrangement (36) to place the singular points in this paper.

While the singular points have a significant impact on the accuracy of the 
approximate solution, the dummy points are only introduced for the invariance of 
the approximate solution and have little effect on the accuracy of the approximate 
solution. Therefore, in this paper, we adopt the following simple arrangement:

3.2  Hele–Shaw problem with a time‑dependent gap

We show the results of numerical computations for (7). The initial curve 
𝛤 (0) ∶ [0, 1] ∋ u ↦ (x1(u), x2(u))

⊤ ∈ ℝ
2 is given by

(19)ya
j
= X∗

j
+

ra

2
|X∗

j+1
− X∗

j−1
|na

j
,

na
j
= −

(X∗
j+1

− X∗
j−1

)⊥

|X∗
j+1

− X∗
j−1

| .

zj = 1000(cos 𝛼i, sin 𝛼i)
⊤, 𝛼i =

2𝜋i

N
, i = 1, 2,… ,N.

Fig. 3  Arrangement of the 
singular point. yj corresponds 
to the original arrangement (35) 
adopted in [24], while ya

j
 does to 

the modified Amano’s arrange-
ment (36)

Xj

Xj+1

Xj−1

Xj−2

X∗
j−1

X∗
j

X∗
j+1

yj

dna
j

ya
jra

2
|X∗

j+1 −X∗
j−1|
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We set the parameters as in Table 1.
The time-dependent gap h(t) is given by h(t) = exp(t) . In Fig. 4, the time evolution 

of the boundary � (t) is shown at t = 0 , 0.36, 0.73, 1.10, 1.47, 1.84, 2.21, and 2.58. The 
shapes at each time step almost coincide with the earlier study by Shelley et al. [27]. 
Note that this is not a comparison at the same discrete time because we use a different 
time discretization than previous studies.

Fig. 5 shows the time evolution of the total length, the area and the volume, where 
the horizontal axis represents the time, the left vertical axis represents the total length 
and the area, and the right vertical axis represents the volume. The graph shows that the 
area decreases monotonically and that the volume-preserving property is satisfied.

3.3  Hele–Shaw problem for magnetic fluids

In this subsection, we report the numerical results of the Hele–Shaw problem for 
magnetic fluids (11).

x1(u) = r cos(2�u), x2 = r sin(2�u),

r = R0 + 0.02(cos(6�u) + sin(14�u) + cos(30�u) + sin(50�u)).

Table 1  parameters for the 
Hele–Shaw problem with a 
time-dependent gap (7)

N = 300 The number of vertices
� = 2.0 × 10−4 The surface tension coefficient
�t = 1∕(10N2) The time-mesh size
r
a
= 1 The parameter in the Amano’s method (36)

R
0
= 1 The initial reference radius

(a) t = 0.0 (b) t = 0.36 (c) t = 0.73 (d) t = 1.10

(e) t = 1.47 (f) t = 1.84 (g) t = 2.21 (h) t = 2.58

Fig. 4  Results of numerical computation for Hele–Shaw flow with time-dependent gap: the time evolu-
tion of the boundary � (t)
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3.3.1  Computation of the magnetostatic field potential '
m

 by adaptive Monte Carlo 
method

To solve problem (11), we need to compute the magnetostatic field potential �m ; 
that is, integration on �(t) . In this paper, we employ the adaptive Monte Carlo 
method.

At every time step, the region MC(t) ⊇ 𝛺(t) is defined as follows:

where g(t) = (gx(t), gy(t))
⊤ is the barycenter of �(t) . Then, M sample points {pk}Mk=1 

are distributed in MC uniformly.
Distributed sample points {pk}Mk=1 are judged whether pk ∈ � by the following 

algorithm. Let ai
k
 be the angle between the vectors Xi−1 − pk and Xi − pk , i.e.,

If 
∑N

i=1
ai
k
= 2� holds, then the sample point pk is judged to be inside � ; otherwise, 

it is judged outside �.
Let Min be the number of points pk belonging to � . Then the area element dS 

of � is defined as dS = A∕Min . By using this dS, the the value of � = �m∕Mc at 
the vertex Xi can be computed approximately as follows:

for i = 1, 2,… ,N.

ai
k
= arccos

(
Xi−1 − pk

|Xi−1 − pk| ⋅
Xi − pk

|Xi − pk|
)
.

�(Xi) = −
�
pk∈�

�
1

�Xi − pk� −
1√�Xi − pk�2 + h2

�
dS

Fig. 5  Results of numerical 
computation for Hele–Shaw 
flow with time-dependent gap: 
time evolution of the total 
length, the area and the volume
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3.3.2  Numerical results

We show the results of numerical computations for (11). The initial curve 
𝛤 (0) ∶ [0, 1] ∋ u ↦ (x1(u), x2(u))

⊤ ∈ ℝ
2 is given by

In Figs. 6 and 7, r is given by

and in Figs. 8 and 9, r is given

We set the parameters as in Table 2.
In each Fig. 6, 7, 8, and 9, the time evolution of the boundary � (t) is shown 

at t = 0 , 0.42, 0.84, 1.26, 1.68, 2.10, 2.52, and 2.94. Comparing cases Bmv = 0 , 
25, and 35, where Bmv = (R0∕h0)

1∕3Bm , it can be seen that the complexity of the 
pattern formed by the magnetic fluid changes depending on the strength of the 

x1(u) = r cos(2�u), x2 = r sin(2�u).

r = R0 + 0.02(cos(6�u) + sin(14�u) + cos(30�u) + sin(50�u)),

r = R0 + 0.05(cos(4�u) − cos(10�u) + cos(22�u) − sin(6�u) + sin(10�u)).

Table 2  Parameters for the Hele–Shaw flow for magnetic fluids (11)

N = 300 The number of vertices
�t = 1∕(10N2) The time-mesh size
r
a
= 1 The parameter in the Amano’s method (36)

R
0
= 1 The initial reference radius

h
r
= h

0
∕R

0
= 0.25 The parameter introduced for simplifying the model

M = 1000 The number of sample points in the Monte Carlo method

(a) t = 0.0 (b) t = 0.42 (c) t = 0.84 (d) t = 1.26

(e) t = 1.68 (f) t = 2.10 (g) t = 2.52 (h) t = 2.94

Fig. 6  Bmv = 0,Ca = 100
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magnetic fluid. Moreover, the shapes at each time almost coincide with earlier 
studies by Tatulchenkov and Cebers [29]. Note that these are not comparisons at 
the same discrete time because we use a different time discretization than previ-
ous studies.

Figs. 10 and 11 show the time evolution of the total length, the area, and the 
volume, where the horizontal axis represents the time, the left vertical axis rep-
resents the total length and the area, and the right vertical axis represents the vol-
ume. The graph shows that the volume-preserving property holds.

(a) t = 0.0 (b) t = 0.42 (c) t = 0.84 (d) t = 1.26

(e) t = 1.68 (f) t = 2.10 (g) t = 2.52 (h) t = 2.94

Fig. 7  Bmv = 25,Ca = 100

(a) t = 0.0 (b) t = 0.42 (c) t = 0.84 (d) t = 1.26

(e) t = 1.68 (f) t = 2.10 (g) t = 2.52 (h) t = 2.94

Fig. 8  Bmv = 0,Ca = 50
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(a) t = 0.0 (b) t = 0.42 (c) t = 0.84 (d) t = 1.26

(e) t = 1.68 (f) t = 2.10 (g) t = 2.52 (h) t = 2.94

Fig. 9  Bmv = 35,Ca = 50

Fig. 10  time evolution of the 
Area, the total Length and the 
Volume ( Bmv = 25,Ca = 100)

Fig. 11  time evolution of the 
Area, the total Length and the 
Volume ( Bmv = 35,Ca = 50)
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4  Conclusion

In this paper, several Hele–Shaw problems were solved using the MFS combined 
with Amano’s method and the asymptotic uniform distribution method. The 
shown results coincided with preceding studies; moreover, some of the properties 
of Hele–Shaw flow, for example, volume-preserving property, are precisely satis-
fied. Therefore, the results ensured that our numerical method can be adequately 
effective for Hele–Shaw problems. Application of the MFS in moving boundary 
problems has been reported in quite a few papers; however, our present attempt 
will widen the possibility of the MFS. The method will be expected to be applied 
to Hele–Shaw type problems and any other types of potential problems.

Besides, magnetic fluid instabilities in the Hele–Shaw cell were simulated, 
then the magnetic effects were observed by comparing numerical results. For 
large Bm , the number of fingers of fingering patterns increased. It is similar to the 
phenomena in three-dimensional space; that is, the number of spikes increases 
with the high intensity of the magnetic field. On the other hand, complex patterns 
such as our results do not appear in three-dimensional space. To investigate the 
difference in the behavior of magnetic fluids between two-dimensional and three-
dimensional spaces mathematically is interesting. We hope that new aspects for 
investigations into magnetic fluid are found from our results.
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